Θέμα 1. Διατομικό μόριο υποτελείται από δύο άτομα με μάζες \(m_1 = m_0 \) και \(m_2 = 2m_0 \), τα οποία αλληλεπιδρούν με ένα δυναμικό της μορφής \(U = U_0 \left[e^{2i(k_0 r)} - 2e^{i(k_0 r)} \right] \), όπου \(U_0 \), \(\alpha \), \(\beta \) θετικές σταθερές και \(\iota \) η μεταξύ τους απόσταση. Να δείξετε \(a) \) ότι υπάρχει απόσταση ευσταθείς ισορροπίας μεταξύ των άτομων και να την υπολογίσετε, \(b) \) ότι για μικρές απομακρύνσεις από την κατάσταση ευσταθείς ισορροπίας, κατα μήκος της ευθείας που ενώνει τα δύο άτομα, το σύστημα εκτελεί αρμονική τωλάντωση, και \(\gamma \) να υπολογίσετε την ιδιοσυγχρόνη ταλάντωσή του συστήματος.

Θέμα 2. Σώμα μάζας \(m_1 \) ευρίσκεται μεταξύ δύο ακλόνων τοιχομάτων με τα οποία είναι συνδεδεμένο με δύο ελατήρια σταθεράς \(s \), το καθένα, και μπορεί να κινείται σε οριζόντιο επίπεδο χωρίς τριβές. Από το σώμα κρέμεται, με αφαρές μη-εκτατό βάρη \(m_2 \), μάζα \(m_2 \). \(a) \) Να γράψετε τις εξισώσεις κίνησης, για μικρές απομακρύνσεις από την κατάσταση ισορροπίας. \(b) \) Να υπολογίσετε τις συχνότητες των κανονικών τρόπων ταλάντωσης, στην περίπτωση που \(s/m_1 = g/L = c_0^2 \), \(m_2 = 2m_1 \). \(\gamma \) Να προσδιορίσετε τις κανονικές μεταβλητές.

Θέμα 3. Χορδή \(n \) ημικύκλων \(L \) και γραμμικής πυκνότητας \(\rho \), τείνεται με τάση \(T \), έχει το ένα άκρο της στερεωμένο σε ακλόνητο σημείο ενώ το άλλο άκρο της είναι ελεύθερο. Να κινείται με τη βοήθεια δακτυλιόδων, πάνω σε κάθετη στη χορδή σέρβις, χωρίς τριβές. Η χορδή κρυστάλλη \(t=0 \), και ενώ ολόκληρο το σημείο της χορδής βρίσκεται στην θέση ισορροπίας τους (\(y(x,t=0) = 0 \)), η χορδή διεγείρεται με μία κατανομή ταχύτητών η οποία παίρνει μέγιστη τιμή \(u_0 \) στο σημείο \(x = L/2 \) και μείωνεται ημιτομοειδώς (όπως στο σχήμα), με διακινούμενη στα άκρα της χορδής. Να βρείτε την απομακρύνση \(y = y(x,t) \) της χορδής για \(t > 0 \).

\[2\sin A \sin B = \cos(A-B) - \cos(A+B), \quad 2\sin A \cos B = \sin(A-B) + \sin(A+B) \]

Θέμα 4. Δύο ημιάσματα παράλληλων χορδών, με γραμμικές πυκνότητες \(\rho_1 \) και \(\rho_2 = 4\rho_1 \), συνδέονται στο σημείο \(x = 0 \) και τείνονται με τάση \(T \). Στην αριστερή ημιχορδή διαδέγεται προς τα δεξιά ένας τετραγωνικός παλμός, ύψους \(y_0 \) και πλάτους \(\Delta x_0 \), του οποίου το δεξιό μέτωπό (έναρξη) φτάνει στο σημείο \(x = 0 \) τη χρονική στιγμή \(t = 0 \). Κατά τη χρονική στιγμή: \(t_0 = \frac{4 \Delta x_0}{5 \sqrt{T/\rho_1}} \),

δώστε τις τιμές ύψους και πλάτους, \(a) \) του προστίπουτος στην αριστερά, \(b) \) του ανακλάμανου και \(y \) του διερχόμενου παλμού, ως συναρτήσεις των \(y_0, \Delta x_0 \), (σχεδίαστε την αντίστοιχη εικόνα διαταραχής των δύο χορδών, για \(t = t_0 \)).

Θέμα 5. \(\Pi \) διάδοση ηλεκτρομαγνητικών κυμάτων σε ιονισμένα αέρια (θερμοπυρηνικό πλάσμα, ιονόσφαιρα) περιγράφεται από την εξίσωση \(\frac{\partial^2 E}{\partial t^2} = c^2 \frac{\partial^2 E}{\partial x^2} - \omega_p^2 E \), όπου \(\omega_p \) η ταχύτητα του φωτός στο κενό και \(\omega_p \) η χαρακτηριστική "συχνότητα πλάσματος". \(a) \) Να προσδιορίσετε τη σχέση διαστάσεων των ηλεκτρομαγνητικών κυμάτων στο πλάσμα. \(b) \) Να δείξετε ότι καθότι \(\omega \rightarrow \omega_p \) η φασική ταχύτητα υπερβάλλει την ταχύτητα του φωτός, αλλά η ομαδική ταχύτητα (δηλ. η ταχύτητα διάδοσης της ενέργειας) παραμένει πάντα μικρότερη του \(c \). \(\gamma \) Να προσδιορίσετε την περιοχή μηκών κύματος της ηλεκτρομαγνητικής ακτινοβολίας που μπορεί να διαδώσει σε θερμοπυρηνικό πλάσμα το οποίο έχει χαρακτηριστική συχνότητα πλάσματος \(\omega_p = 6.5 \times 10^{11} \text{ s}^{-1} \).