ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΨΥΧΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΣΤΑ ΤΙΣΤΗ (Λ.Ε.)
ΟΚΤΩΒΡΙΟΣ 2004

1) Για την ευμεταβολή του προβλήματος αυτό ιδίων μορφών σε κινδύνο προς επαφή, η
τελευταία επιμέλεια αυτοπροσώπου προ τα θανατηφόρα με
την υπόθεση ρύθμισης. Αφήνοντας 20 δόσεις του ίδιου ιότου θανατηφόρο
την υπόθεση. Εστώ ότι 4 και 20 είναι ευμεταβόλες.
a) Εστώ η τετάρτη μέγιστο του προβλήματος (Αρμ αριθ. 10 ευμεταβόλες
και η 10 αυτοπροσώπου). Υποθέσετε έτσι το 20 δόση θανατηφόρα την
τετάρτη μέγιστο (υποθέσετε ότι μόλις 20 δόσεις ήταν ιότα που αυτοπροσώπο θα
αναπτύχθηκαν το ευμεταβόλα υπόθεση). Αν \(L(n) \) είναι η πιθανότητα να υπάρχουν
4 ευμεταβόλες ήταν 20, να βρείτε τον ραθύμιο με το \(L(n) \).
b) Επιτρέψτε την μετάβαση του μέγιστου πυρόβουλου προς μέγιστο \(L(n) \);
c) Αναλύετε το μέγιστο του προβλήματος με τον μέγιστο μέγιστο πυρόβουλου,
(Υπόθεσε: Γράψτε την \(L(n+1) \), και δώστε ευγενικά μιαν εικόνα του μεγαβραδορο της 1) .

2) Μετάβαση εναπαγωγής μπορεί να τεθεί μεταβαλλόντος προς
Εστώ με η μέσο αξία πρακτικών που είδα με τη μπορεί να άρεα (ο μο
στάτος φυσικό). Ως εκεί του αρχικού μεταβαλλόμενο μετάβαση των πρακτικών
μετά την απαγωγή αντιστοιχεί κάτι πρέπει να αντικαθιστηθείν το παρόν
των μπορεί. ένας να οδηγήσει της υπόθεσης \(H_0 \), \(H_1 \) όπου
\(\mu \) είναι η μέσο αξία πρακτικών που έχει \(\sigma \) ανά άρεα το νέο μπορεί
(\(\sigma \) είναι άρεος) \(\bar{y} \) ανά μέσο αξία υπόθεσης. Ποια πρέπει να
είναι με εναπαγωγή αν
a) Δεν \(H_0 \) με απαγωγή αντικαθιστήθηκε το μπορεί σε ισχύ και αυτο
b) ένα αξιοπιστικό το νέο μπορεί με εισάγωντας \(H_0 \)
c) Θέτοντας το νέο μπορεί (εισάγωντας \(\sigma \) είναι ανά άρεα)
ed) \(\bar{y} \) ανά μέσοαξία υπόθεσης \(\sigma \) το νέο μπορεί απαγωγή
8) Για πάντα μπορεί να περιπτώσει αλλά ισχυρά με την μπορεί και απαγωγή υπόθεση: \(\bar{y} \) με το νέο μπορεί;
5) Εάν ήταν μ = 9,5 και αποφασίσατε ότι θα αργάρνουν \(H_0: \mu = 9,5 \) εάν ήταν \(H_1: \mu > 9,5 \), θετικός αλλά με επίπεδο α = 0,05. Αναφέροντας ένα νέο μεγαλύτερο με μεγαλύτερη \(\mu \), το δεκαπέντε ή σαταναστικά με μεγαλύτερο μέγεθος. Ο δεκαπέντε μέγεθος είναι \(\bar{X} = 9,8 \) με πεδίο χάραξης \(s = 1,095 \).

(i) Γράψτε το ιδιαίτερο εξέλιγμα
(ii) Γράψτε το πεδίο αναρίθμησης
(iii) Αναλυτικά με μηδενική υπόθεση
(iv) Για το ελάχιστον μέγεθος πεδίο αναρίθμησης που γράφετε στο (ii) βρείτε την πεδία τήχης εξ έξοδου τύπου II αν \(\mu = 10 \). (\(\nu \))

3) Με βάση τον τύπο \(x_1, x_2, \ldots, x_n \) έχον γενικά \(X \sim f(x, \theta) = \frac{a}{\theta} x^{a-1} e^{-\frac{x}{\theta}} \), \(x \geq 0 \) όπου \(\theta > 0 \) άρχισε στοιχείο παράμετρο και \(a > 0 \) μητρώα τεταγκούς.

a) Να έξυπνεστε με τέσσερα μέτρα, κάθε από αυτά με την πεδία τήχης του παράμετρο \(\theta \).

b) Να έξυπνεστε με τέσσερα μέτρα, κάθε από αυτά με την πεδία τήχης του παράμετρο \(\theta \).

g) Με τον βαθμό την θεώρηση Blackwell για τον αρχικό παράμετρο να επιλέξετε ΟΑΕΑ για τον παράμετρο \(\theta \).

5) Να έρθετε το λογαριασμό γράμμα Cramer-Rao και να το εφαρμόσετε με τους δείκτες της ΟΑΕΑ την ερώτηση γ).