Θέμα Ι. Για την πυκνότητα πιθανότητας \(P \) και το ρέμα πυκνότητας πιθανότητας \(\mathbf{J} \) ισχύει

\[
\frac{\partial P}{\partial t} = -\nabla \cdot \mathbf{J}
\]

Αποδείξτε αυτή την σχέση στην Κβαντομηχανική ορίζοντας το κατάλληλο \(\mathbf{J} \) δεδομένου ότι \(P = \Psi(r,t)^* \Psi(r,t) \).

Θέμα II. Σωματίδιο μάζας \(\mu \) κινείται σε ένα απεριόρθωτο πυράδι δυναμικού μεταξύ των θέσεων \(a \) και \(b \).

α) Βρείτε την ενέργεια και την κυματοσυνάρτηση για την θετική και για την πρώτη διεγερμένη στάθμη.

β) Μια μικρή διαταραχή \(V(x) = \epsilon |x| \) προστίθεται στο σύστημα. Χρησιμοποιήστε την τετραδιαγραμματική διαταραχή πρώτης τάξης για να υπολογίσετε την μεταβολή στην ενέργεια της θεμελιώδους στάθμης.

γ) Υπολογίστε την πυκνότητα μετάβασης από την θεμελιώδη στην πρώτη διεγερμένη στάθμη (του αδιαταραχτού προβλήματος) εάν η διαταραχή \(V(x) = \epsilon |x| \) προστίθεται στο σύστημα.

Θέμα III. Ένα σωματίδιο μάζας \(M \) κινείται ελεύθερα στο χώρο ανάμεσα σε δύο απλή πλάσματα σφαιρικής επιφάνειας με ακτίνες \(a=1 \) και \(b=2 \), \(a<b \).

α) Γράψτε την Χαμηλότονιανή του σωματιδίου σε σφαιρικές συντεταγμένες και εξεχωρήστε τον όρο της στροφομηχανής.

β) Υπολογίστε τις ενεργειακές ιδιοτιμές και τις ιδιοσυναρτήσεις του σωματιδίου για στροφομήχανη \(\mathbf{e} \) ισημερινές.

Θέμα IV. Δύο σωματίδια με spin \(S_1 = 1/2 \) και \(S_2 = 1 \) αλληλεπιδρούν τοπικά και η Χαμηλότονιανή που περιγράφει την αλληλεπίδραση είναι

\[
H = \mathbf{A} \mathbf{S}_1 \cdot \mathbf{S}_2
\]

Ως το \(A \) μια σταθερά με τις κατάλληλες μονάδες.

α) Υπολογίστε τις δυνατές τιμές της ολικής στροφομηχανής \(\mathbf{S} \) των δύο σωματιδίων και τον εξυπλισμό σε κάθε περίπτωση.

β) Να εκφράσετε το εσωτερικό γινόμενο των δύο spin, μέσω των \(S_1, S_2 \) και της ολικής στροφομηχανής \(\mathbf{S} \).

γ) Υπολογίστε τις ενεργειακές ιδιοτιμές του συστήματος.
\[D (V \dot{V} x \dot{V} x) = \dot{V} x \dot{V} x + \dot{V} x \cdot \dot{V} x \]

\[\int \cos^2 \theta \, d\theta = \frac{\theta}{2} + \frac{1}{4} \sin 2\theta \]

\[E_{n}^{(n)} = V_{mn} = \langle \psi_{n}^{(0)} \psi_{n}^{(0)} \rangle \]

\[\int x \cos^2 kx \, dx = \frac{x^2}{4} + \frac{x \sin 2kx}{4k} + \frac{\cos 2kx}{8k^2} \]

\[P_{n} \rightarrow m = |a_{nm}^{(n)}|^2 \quad V_{mn} = \langle \psi_{m}^{(0)} \psi_{n}^{(0)} \rangle \]

\[a_{nm}^{(n)} = -\frac{i}{\hbar} \int_{0}^{T} V_{mn}^{(n)} e^{i\omega_{mn} t'} \, dt' \]

\[\omega_{mn} = \frac{1}{\hbar} (E_{m}^{(0)} - E_{n}^{(0)}) \]

\[D^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) \]