ΘΕΡΜΟΔΥΝΑΜΙΚΗ, ΦΕΒΡΟΥΑΡΙΟΣ 2010
ΔΙΔΑΣΚΏΝ: ΛΕΤΕΡΗΣ ΠΑΠΑΝΤΩΝΟΠΟΥΛΟΣ
ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ

Θέμα 1

Ένα θερμόμετρο υδραγύρου βαθμομοιμενά γραμμικά βυθίζεται σε πάγο. Ο υδράγυρος εμφανίζει ένδειξη -4. Όταν τοποθετείται στους ατμούς νερού που βράζει, στα 76 cm υδραγύρου, εμφανίζει ένδειξη +106. Σε δοχείο με χλιαρό νερό, ο υδράγυρος εμφανίζει ένδειξη n=+75. Να βρεθεί η θερμοκρασία T του δοχείου, που δείχνει το θερμόμετρο.

Θέμα 2

Ένα ιδανικό αέριο 15kg και θερμοκρασίας 250K περιέχεται σε ένα δοχείο ύγχου 20m³. Βρείτε το απαραίτητο έργο για την ελάττωσή του ύγχου σε 10m³
α) Με σταθερή πίεση,
β) Με σταθερή θερμοκρασία.
γ) Ποιά είναι η θερμοκρασία στο τέλος της α) διαδικασίας;
δ) Ποιά είναι η πίεση στο τέλος της β) διαδικασίας;
ε) Σχεδιάστε και τις δύο διαδικασίες στο P - V επίπεδο.
Θέμα 3

Θεωρείτε ένα van der Waals αέριο.
α) Δείξτε ότι \(c_v \) είναι μόνο συνάρτηση της \(T \).
β) Δείξτε ότι η ειδική εσωτερική ενέργεια είναι

\[
u = \int c_v dT - \frac{a}{v} + u_0.
\]

γ) Δείξτε ότι η ειδική εντροπία είναι

\[
s = \int \frac{c_v}{T} dT + R \ln(v - b) + s_0.
\]

Θέμα 4

Υποθέτοντας ότι οι μεταβλητές \(T \) και \(v \) είναι ανεξάρτητες αποδείκνυτε
α)

\[
\left(\frac{\partial u}{\partial v} \right)_T = T \left(\frac{\partial P}{\partial T} \right)_v - P.
\]

β) Χρησιμοποιώντας την πάρα πάνω σχέση δείξτε ότι

\[
T ds = c_v dT + T \left(\frac{\partial P}{\partial T} \right)_v dv = c_v dT + \frac{T \beta}{\kappa} dv.
\]