ΟΜΑΔΑ Α' \\
ΣΕΜΦΕ Μαθηματική Ανάλυση ΙΙΙ Φεβρουάριος 2008

Ονοματεπώνυμο:

ΘΕΩΜΑ 1ο. Α. Για μια καμπύλη με υφιστάμενο παράμετρο \(r = r(s) \), \(s \in I \) δίνεται το μοναδιαίο εφαπτόμενο διάνυσμα \(T(s) = r'(s) \), το πρώτο κάθετο διάνυσμα \(N(s) = \frac{T'(s)}{k(s)} \) και η καμπυλοτήτα \(k(s) = \| r'(s) \| \neq 0 \). Με μόνο αυτά τα στοιχεία να δειχθεί ότι για το δεύτερο κάθετο διάνυσμα \(B = T \times N \) ισχύει: \(B = - N \).

B. Δίνεται το διανυσματικό πεδίο: \(F(x, y) = (3x^2y^2 + 1, 2x^3y + ax + 2), a \in \mathbb{R} \).

1. Να υπολογισθεί το επικαμπύλιο ολοκλήρωμα του διανυσματικού πεδίου \(F(x, y) \) στην καμπύλη: \(r(t) = (t, t^2), t \in [0, 1] \).

2. Να υπολογισθεί η παράμετρος \(a \) ώστε το \(F(x, y) \) να είναι συντηρητικό, να προσδιορισθεί \(f \) ώστε \(\nabla f = F \) και στη συνέχεια να επαληθεύσετε το αποτέλεσμα του προηγούμενου ερωτήματος υπολογίζοντας το επικαμπύλιο ολοκλήρωμα με βάση γνωστή πρόταση την οποία να διατυπωθεί και να αποδειχτεί.

ΘΕΩΜΑ 2ο: A. Δίνεται το χώριο \(\Omega = \{(x, y, z) \colon 0 \leq z \leq 4 - 2x^2 - y^2\} \) που περιορίζεται από τις επιφάνειες \(S_1 : z = 4 - 2x^2 - y^2 \) και \(S_2 : z = 0 \). Να επαληθεύσετε το θεώρημα Gauss για το χώριο \(\Omega \) και το διανυσματικό πεδίο: \(F(x, y, z) = (x, y, 1) \).

ΘΕΩΜΑ 3ο. Α. Δίνεται η συνάρτηση \(f : \mathbb{R}^2 \setminus \{(0, 0)\} \rightarrow \mathbb{R} \) η οποία είναι αρμονική στο πεδίο ορισμού της, δηλαδή,

\[
\frac{\partial^2 f}{\partial x^2}(x_0, y_0) + \frac{\partial^2 f}{\partial y^2}(x_0, y_0) = 0, \quad \forall (x_0, y_0) \in \mathbb{R}^2 \setminus \{(0, 0)\}.
\]

Χρησιμοποιήστε το Θεώρημα Green για να δείξετε ότι το επικάμπηπλωμα \(\int_C (\frac{\partial f}{\partial y} \, dx - \frac{\partial f}{\partial x} \, dy) \)

σε κάθε κόγκο \(C \) με κέντρο την αρχή των αξόνων, είναι το ίδιο.

B. Εστιάτο Μία αλληλεγγύη καμπύλη, που φράσες ένα χώριο στο οποίο εφαρμόζεται το θεώρημα του Green. Δείξτε ότι το εμβαδόν του χώρου \(D \) που περιβάλλεται από την \(C = \partial D \) είναι ίσο με

\[
E = \frac{1}{2} \int_C xy \, dy - yx \, dx.
\]

Χρησιμοποιώντας τον τύπο αυτόν, υπολογίστε το εμβαδόν του χώρου που περικλείεται από την έλλειψη \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \). (Δίνεται η παραμετρικοποίησή της: \(r : [0, 2\pi] \rightarrow \mathbb{R}^2, \ r(t) = (a \cos t, b \sin t) \))

ΘΕΩΜΑ 4ο. Α. Υπολογίστε το \(\int_S \sqrt{\nabla f} \) όπου \(D \) είναι το παραλληλόγραμμο που ορίζεται από τις ευθείες:

\(2x+y=2, \ 2x+y=3, \ x+y=0, \ x+y=5 \).

B. Αλλάξτε τη σειρά ολοκλήρωσης, (θεωρήστε το χώριο από κανονικό ως προς \(x \), κανονικό ως προς \(y \)) υπολογίστε το παρακάτω ολοκλήρωμα:

\[
\int D \sqrt{a^2-x^2} \, dA.
\]

\(\text{Η εξέταση διαρκεί 3 ώρες} \)