ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ & ΝΕΥΡΟΝΙΚΑ ΔΙΚΤΥΑ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

21/09/2017

Ακ. έτος 2016 - 2017, επαναληπτική εξέταση
Διδάσκων: Κ. Κουσουρής (Επ. Καθηγητής ΣΕΜΦΕ)
Χρόνος εξέτασης: 2 ώρες

Απαντήστε και στα τέσσερα (4) θέματα

Θέμα 1ο (2.5 μονάδες)
Θεωρήστε δύο κατηγορίες \(\omega_1, \omega_2 \), με ένα ουσιώδες χαρακτηριστικό \(x \) και με συναρτήσεις πιθανοφάνειας που δίνονται από τις σχέσεις: \(p(x|\omega_1) = A_1 \cdot \exp(-x/2), \quad p(x|\omega_2) = A_2 \cdot x \cdot \exp(-x/2), \quad x > 0 \).

(a) Να προσδιορίσετε τις σταθερές \(A_1 \) και \(A_2 \).
(b) Δίνεται: \(\int x e^{-ax} \, dx = \frac{-ax + 1}{a^2} e^{-ax} + C \)

(β) Να εξάλεξετε τη συνδήκη που προσδιορίζει τις περιοχές απόφασης ενός ταξινομητή Bayes.

(γ) Να βρείτε τις περιοχές απόφασης ενός ταξινομητή Bayes που διαχωρίζει τις κατηγορίες \(\omega_1, \omega_2 \) αν \(\sigma(x) = 2/3 \) και να προσδιορίσετε το σφάλμα ταξινόμησης.

Θέμα 2ο (2.5 μονάδες)
Θεωρείτε ένα πρόβλημα ταξινόμησης σε δύο διαστάσεις με δύο ισοπίθανες κλάσεις \(\omega_1 \) και \(\omega_2 \), των οποίων οι συναρτήσεις πιθανοφάνειας περιγράφονται ως ακολούθως:

\[p(x|\omega_1) \sim N(\mu_1, \Sigma), \quad p(x|\omega_2) \sim N(\mu_2, \Sigma), \quad \text{όπου} \ \mu_1 = (0, 0)^T, \ \Sigma = \sigma^2 I, \ \Sigma_2 = 2 \Sigma_1, \]

(a) Να προσδιορίσετε την επιφάνεια απόφασης ενός ταξινομητή Bayes.
(b) Να βρείτε την πιθανότητα λάθους ταξινόμησης.

Θέμα 3ο (2.5 μονάδες)
Έστω \(x_k, \ k = 1, 2, ..., n \) είναι η ανεξάρτητα δείγματα μίας τυχαίας μεταβλητής \(X \) με πυκνότητα πιθανότητας \(p(x|\theta) = A[1-(x/\theta)^2], \ |x| \leq \theta \). \(\Rightarrow \theta \geq 0 \)

(a) Να προσδιορίσετε την συνάρτηση \(A(\theta) \).
(b) Να βρείτε τη σχέση που προσδιορίζει τον εκτιμητή μέγιστης πιθανοφάνειας της παραμέτρου \(\theta \), δοθέντος τον συνόλο των ανεξάρτητων δειγμάτων.

Θέμα 4ο (2.5 μονάδες)
Έστω o παρακάτω δειγματοληπτικός χώρος δύο κατηγοριών \(\omega_1, \omega_2 : \Omega = \{(1, -2), (2, 1), (-2, 2), (10, 8), (12, 11), (11, 11), (6, -1), (7, 2), (8, 1), (1, 12), (2, 9), (5, 5)\} \), με τα 6 πρώτα στοιχεία να ανήκουν στην κλάση \(\omega_1 \) και τα υπόλοιπα στην \(\omega_2 \).

(a) Να σχεδιάσετε τα παραπάνω σημεία στο καρτεσιανό επίπεδο και να ελέγξετε αν αυτές οι δύο κατηγορίες είναι γραμμικά διαχωρίσιμες.
(b) Να σχεδιάσετε μία κατάλληλη αρχιτεκτονική Perceptron η οποία να διαχωρίζει τις δύο κατηγορίες.