ΕΞΕΤΑΣΕΙΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ
ΦΥΣΙΚΗΣ I

Χειμερινό Εξάμηνο 2006

Γενικές Οδηγίες: Κάντε logon στο λογαριασμό σας. Δημιοφηγήστε έναν
υποκατάλογο Exam360702 μέσα στον οποίο θα δουλεύετε κατά τη διάρκεια
tης εξέτασης. Κάθε οχετική διαδρομή (relative path) που αναφέρεται, είναι σε
σχέση με αυτόν τον υποκατάλογο. Για κάθε θέμα θα δημιουργήσετε υποκατάλογο
01, 02, 03 μέσα στους οποίους θα βρίσκονται όλα τα ζητούμενα αρχεία του
θέματος. Οι απαντήσεις σε ερωτήσεις θα γράφονται σε αρχείο ASCII με όνομα
NOTES στον αντίστοιχο υποκατάλογο. Θα πρέπει ο κώδικας και τα εκτελεσμένα
αρχεία που χρησιμοποιήσατε να βρίσκονται στον αντίστοιχο υποκατάλογο.

Μπορείτε να έχετε έκταση ομοιόμορφες/βιβλία καθώς και πρόσβαση
στο διαδίκτυο. Απαγορεύεται κάθε είδους επικοινωνία μεταξύ οικ. ή με άλλους
όσο διαρκεί η εξέταση. Όλα τα θέματα είναι βαθμολογικά ισοδύναμα. Καλή
Επιτυχία!

1. Γράψτε πρόγραμμα σε Fortran 77 που να υπολογίζει το συνολικό ραγιτικό
πεδίο πάνω σε επίπεδο το οποίο δημιουργήθηκε από δύο εισιτήρια ζωγράφων
ρεπριστοφόρων αγωγών απείρου μήκους οι οποίοι τέρμαναν το επίπεδο
κάθετα στα ομελέα (1,0)m και (-1,0)m. Στην είσοδο θα ζητήθηκε από
το χρήστη η αλφαβητική τιμή της έντασης των ρεπριστών (μoI1/2π) και
(μoI2/π) καθώς και η θέση (x,y) στην οποία θα υπολογίζεται το ραγιτικό
πεδίο. Στην έξοδο θα παράγονται οι ουσιαστικές (x,y), οι ουσιαστικές
Bx και By και το μέτρο B. Κάντε τη γραφική παράσταση B(x) πάνω
στην ευθεία y = x για μoI1/2π = -μoI1/2π = 1.

Δίνεται: \[\vec{B}(x,y) = (\frac{\mu_o}{2\pi})(I/r)\hat{\theta}, \hat{\theta} = \frac{-(y-y_0)\hat{i} + (x-x_0)\hat{j}}{r}, r = \sqrt{(x-x_0)^2 + (y-y_0)^2}, (x_0,y_0) \ η \ θέση \ του \ ρεπριστός \ στο \ επίπεδο. \]
2. Φορτία \(q_1 = -q_2 = q_3 = -q_4 = q_5 = -q_6 = 4\pi e_0 \) τοποθετούνται στις κορυφές κανονικού εξαγώνου. Σχεδιάστε αντιπροσωπευτικές δυναμικές γραμμές του ηλεκτρικού πεδίου που δημιουργούν το επίπεδο.

3. Υπολογίστε την ενέργεια \(E_0 \) του αναρμονικού ταλαντώματος υπολογίζοντας \(E_0(1/N) \) για \(\lambda = 0.9 \). Να κάνετε τη γραφική παράσταση \(E_0(1/N) \rightarrow E_0 \) καθώς \(N \rightarrow \infty \). Σχεδιάστε για ποιες για \(N > N_0 \) μπορείτε να θεωρήσετε το αποτέλεσμα της αριθμητικής προσέγγισης αορατές για την ακρίβεια υπολογισμού που θα θέσετε. Ποιά περιμένετε να είναι ποσοτικά η εξάρτηση του \(N_0 \) από το \(\lambda \) και από το ενεργειακό επίπεδο \(n \) το οποίο μελετάτε; Γιατί;