1

Θεωρείτε το κύκλωμα του σχήματος που αποτελείται από έξι δομές αντιστάσεων και μια πηγή τάσης $V_o$.

(a) Να βρείτε το ισοδύναμο κύκλωμα Thévenin (όπως περιγράφεται στο σχήμα Ι) του κυκλώματος αριστερά των ακροδεκτών $A$ και $B$ του αρχικού κυκλώματος. Δηλαδή να προσδιορίσετε την τάση $V_{Th}$ και την αντίστασή $R_{Th}$ ως συνάρτηση των $V_o$ και $R$.

(β) Να βρείτε το ισοδύναμο κύκλωμα Norton (όπως περιγράφεται στο σχήμα ΙΙ) του κυκλώματος αριστερά των ακροδεκτών $A$ και $B$ του αρχικού κυκλώματος. Δηλαδή να προσδιορίσετε την πηγή ρεύματος $I_N$ και την αντίστασή $R_N$ ως συνάρτηση των $V_o$ και $R$.

2

Θεωρείτε το κύκλωμα του σχήματος που περιλαμβάνει ένα τρανζίστορ τύπου npn. Θα δείξητε όταν η τάση στην είσοδο $v_i = 5 \text{ V}$ λαμβάνει τη μέγιστη τιμή (η οποία είναι τα 5 V) τότε το τρανζίστορ να οδηγείται στην περιοχή κόμου και επομένως η τάση εξόδου $v_o$ να λαμβάνει την ελάχιστη τιμή η οποία είναι $v_o = 0.2 \text{ V}$.

Ποια είναι η ελάχιστη τιμή της ενίσχυσης ρεύματος κοινού εκπομπού, $\beta = i_C/i_B$, για την οποία επιτυγχάνεται ελάχιστη τιμή στην τάση εξόδου για μέγιστη τάση εισόδου;

Ποια είναι η τάση εξόδου όταν η τάση εισόδου είναι μηδέν;

(Αυτό το κύκλωμα αποτελεί ένα λογικό αναστροφέα.)
Θεωρείτε το κύκλωμα του ιδανικού τελεστικού ενισχυτή όπως φαίνεται στο σχήμα.
Να υπολογίσετε τη συνάρτηση κέρδους \( G = \frac{v_o}{v_i} \) (\( v_o \) και \( v_i \) είναι τα σήματα εξόδου και εισόδου, αντίστοιχα) του κυκλώματος ως συνάρτηση της κυκλικής συχνότητας \( \omega \), \( R \), \( L \), και \( C \). Η έκφραση της \( G \) να είναι στη μορφή \( G = A + jB \), όπου \( A, B \) είναι πραγματικοί αριθμοί.
Ποια είναι η τιμή της \( |G| \) για μικρές τιμές συχνοτήτων όπου \( \omega L \ll 1/(\omega C) \):

4

Να γράψετε μια λογική σχέση, \( Y = f(A, B, C) \) (\( f \) συνάρτηση των μεταβλητών \( A, B, C \) του παρακάτω πίνακα), και να σχεδιάσετε ένα κύκλωμα (χρησιμοποιώντας μόνο πύλες NAND) που να δέχεται ως εισόδους τα \( A, B, C \) και να υλοποιεί τη σχέση \( Y \) στην έξοδο.

<table>
<thead>
<tr>
<th>( A )</th>
<th>( B )</th>
<th>( C )</th>
<th>( Y )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Μπορείτε να χρησιμοποιήσετε σημειώσεις/βιβλίο του μαθήματος.

Τα 4 θέματα είναι ισοδύναμα

Καλή επιτυχία