1. Αν ο πίνακας \(A \) είναι κανονικός τετοιος ώστε \(A^9 = A^8 \), δείξτε ότι \(A \) είναι ερμιτιανός και \(A^2 = A \).

2. Αν \(\sigma \) και \(\tau \) είναι αντίστοιχα η μικρότερη και μεγαλύτερη ιδιαίτερα τιμή του μην πίνακα \(A \), δείξτε ότι

\[
\sigma \| x \|_2 \leq \| Ax \|_2 \leq \tau \| x \|_2
\]

για κάθε διανύσμα \(x \in \mathbb{C}^n \).

3. Αν \(\sigma_1, \sigma_2 \) είναι οι μεγαλύτερες ιδιαίτερες τιμές αντίστοιχα των μην πίνακων \(A, B \) και \(\sigma \) είναι η μεγαλύτερη ιδιαίτερα τιμή του \(A + B \), δείξτε ότι \(\sigma \leq \sigma_1 + \sigma_2 \).

4. Δείξτε για τους πίνακες \(A, B \) την σχέση:

\[
\text{rank}(AB) \leq \min \{ \text{rank}A, \text{rank}B \}.
\]

5. Δείξτε ότι ενας χώρος \(K \) είναι \(A \)-αναλλοιωτός ακριβώς όταν \(K^\perp \) είναι \(A^* \)-αναλλοιωτός.

Διαρκεία Εξετασης: 2.30 Ω