ΘΕΜΑ 1. (α) Δίνεται η συνάρτηση $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$, αν $(x, y) \neq (0, 0)$ και $f(0, 0) = 0$. Δείξτε ότι η f είναι συνεχής στο $(0, 0)$.

(β) Εξετάστε αν υπάρχει το παρακάτω όριο

$$\lim_{(x, y) \to (0, 0)} \frac{x^2y}{x^4 + y^2}.$$

ΘΕΜΑ 2. (α) Έστω η συνάρτηση $f(x, y) = g(x)h(y)$, όπου $g, h : \mathbb{R} \to \mathbb{R}$ παραγωγισμένες συναρτήσεις με συνεχείς παραγώγους. Βρείτε τις μερικές παραγώγους της f σε κάθε $(x_0, y_0) \in \mathbb{R}^2$ και δείξτε ότι η f είναι διαφοριζόμενη.

(β) Έστω $f : \mathbb{R}^3 \to \mathbb{R}$ με $f(x, y, z) = x^2 + y^2 + z^2$ κατά $x_0 = (1, 2, 3)$. Βρείτε το μονοδιάδικο διάνυσμα \vec{e} για το οποίο η μερική παράγωγος της f στο x_0 κατά την κατεύθυνση \vec{e} γίνεται μέγιστη.

ΘΕΜΑ 3. (α) Δίνεται η συνάρτηση $f : \mathbb{R}^2 \to \mathbb{R}$ με τύπο $f(x, y) = \sqrt{xy}$. Δείξτε ότι (i) οι πρώτες τάξεις μερικές παραγώγους της f στο $(0, 0)$ είναι και οι δύο μηδέν και (ii) η f δεν είναι παραγωγισμένη στο $(0, 0)$.

(β) Δώστε τον τύπο του πολυώνυμου Taylor βαθμού 2 με κέντρο ένα $(x_0, y_0) \in \mathbb{R}^2$ με συνάρτησης $f : \mathbb{R} \to \mathbb{R}$ (η οποία έχει μερικές παραγώγους δεύτερης τάξης στο (x_0, y_0)).

ΘΕΜΑ 4. (α) Δίνεται η συνάρτηση $f : \mathbb{R}^2 \to \mathbb{R}$ με τύπο

$$f(x, y) = 2x^2 - 4xy + y^4 + 1.$$

Βρείτε τα τοπικά ακρότατα της f.

(β) Δίνεται η συνάρτηση $F(x, y) = x^2y + 3y^3x^4 - 4$. Αποδείξτε ότι η εξίσωση $F'(x, y) = 0$ ορίζει πεπληγμένα μια μοναδική συνάρτηση $y = f(x)$ σε μια περιοχή κάθε σημείου (x, y) με $F(x, y) = 0$. Υπολογίστε την $f'(1)$.

ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 2,5 ΩΡΕΣ