Θέμα 1.
Δείξτε ότι το απλούστερο μοντέλο για αγωγό προβλέπει ειδική αγωγιμότητα

\[\sigma = \frac{Nf q^2/m}{\gamma - i\omega} \]

(1)

όπου \(N \) είναι ο αριθμός μορίων ανά μονάδα όγκου στον αγωγό, \(f \) ο αριθμός ηλεκτρονίων ανά μόριο, \(\gamma \) η στατική απόσβεση και \(\omega \) η συχνότητα ταλάντωσης των ηλεκτρονίων στο μόριο. (2 βαθμοί)

Θέμα 2.
a) Δείξτε ότι οι εξισώσεις του Maxwell περιέχονται στις (2 βαθμοί)

\[\partial_i F^{\mu\nu} = \mu_0 J^\mu, \quad \partial_\mu F^{\mu\nu} = 0 \]

(2)

όπου \(F^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \).

b) Δείξτε ότι (1 βαθμός)

\[\frac{1}{2} F^{\mu\nu} F_{\mu\nu} = B^2 - E^2 \]

\[\frac{1}{4} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} = \mathcal{E} \cdot \mathcal{B} \]

(3)

Θέμα

Στη θεωρία του Bohr για το άτομο του υδρογόνου, το ηλεκτρόνιο στη θεμελιώδη του κατάσταση κινείται (υπό την επίδραση της ηλεκτροστατικής έλξης Coulomb που ασκεί το πρωτόνιο στον πυρήνα) σε ένα κύκλο ακτίνας \(r_0 = 5 \cdot 10^{-11} \text{m} \). Σύμφωνα με την κλασική ηλεκτροδυναμική, το ηλεκτρόνιο θα έπρεπε να χάνει ενέργεια υπό μορφή ακτινοβολίας, και ακολουθώντας σταδιακώς τροχιά να πέφερε τελικά στον πυρήνα. Αφού δείξτε ότι για το μεγαλύτερο μέρος της τροχιάς αυτής είναι \(\nu << c \), στη συνέχεια να εκτιμήσετε το χρόνο ζωής του ατόμου του Bohr. (Υποθέστε ότι κάθε στερέα της τροχιάς είναι κατά προσέγγιση καθική)

1
Δίνονται: \(e = 1,6 \cdot 10^{-19} C, \quad \epsilon_0 = 8,85 \cdot 10^{-12} C^2/Nm^2, \quad m_e = 9,11 \cdot 10^{-31} kg \) (2 βαθμοί)

Θέμα 4.

Θεωρείτε την κοιλότητα συντονισμού που δημιουργείται αν κλείσουμε τα δύο όρια ενός ορθογώνιου κυματοδηγού \((0 \leq x \leq a \text{ και } 0 \leq y \leq b)\), στα σημεία \(z = 0 \) και \(z = d \), διαμορφώνοντας έτσι ένα τέλεια αγώνιμο άδειο χωτί. Δείξτε ότι οι συχνότητες συντονισμού για τους \(\text{EH} \) τρόπους συντονισμού δίνονται από τη σχέση

\[
\omega_{mn} = c \pi \sqrt{\left(\frac{l}{d}\right)^2 + \left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}
\]

(4)

(όπου \(l, m \) και \(n \) είναι ακέραιοι) και βρείτε το ηλεκτρικό και το μαγνητικό πεδίο. (3 βαθμοί)