ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
8ο ΕΞΑΜΗΝΟ
ΕΠΙΛΕΠΤΙΚΗ ΕΞΕΤΑΣΗ:
ΑΡΧΕΣ ΜΕΤΑΔΟΣΗΣ ΜΙΚΡΟΚΥΜΑΤΙΚΩΝ ΚΑΙ ΟΠΤΙΚΩΝ ΣΗΜΑΤΩΝ

ΖΗΤΗΜΑ 1ο
Επίπεδο κύμα με ηλεκτρικό πεδίο \(E = z \cos \left(\omega (t - x/c) \right) \) με \(\omega = 10^9 \text{ rad/sec} \), προσπίπτει σε ημιάπεριχ χώρο όπως φαινείται στο σχήμα.

\[
\begin{array}{c|c|c}
\text{άερας} & \varepsilon_r(\omega) & \mu_r = 1 \\
\hline
\sigma = 0 & & \\
\end{array}
\]

Η σχετική διηλεκτρική σταθερά του χώρου είναι
\(\varepsilon_r(\omega) = \varepsilon_r-\varepsilon_{\infty} \left(\frac{1 + j\omega \tau}{1 + j\omega} \right) \) όπου \(\varepsilon_{\infty} = 1.33, \varepsilon_r = 81 \) και \(\tau = 10^{-9} \text{ sec} \).

Ερωτήσεις:
α) Να υπολογίσετε το ηλεκτρικό πεδίο για το διαδικτυακό κύμα στο χώρο \(x < 0 \) σε απόσταση \(x = 100m \).
β) Να υπολογίσετε το ηλεκτρικό πεδίο για το ανακλημένο κύμα στη θέση \(x = -100m \).
γ) Σε περίπτωση που το προσπίπτον κύμα ήταν \(E = \hat{z} \int_{0}^{\omega} \frac{\Delta \omega}{2} \omega e^{-\omega^2/2} \cos \left(\omega(t - x/c) \right) \) όπου \(\Delta \omega = 10^6 \) που είναι θα ήταν οι αντίστοιχες τιμές (α) και (β).

ΖΗΤΗΜΑ 2ο
Εναέρια γραμμή μεταφοράς χωρίς απόλειες, με μήκος 2.17 cm και χαρακτηριστική αντίσταση \(Z_0 = 100 \Omega \) η τροφοδοτεί διακόπτη ηλεκτρονικού στην 6 GHz και τερματίζεται με φορτίο το οποίο αποτελείται από ομικτή τερματική σопρό της ομιλίας \(60 \Omega \) σε σειρά με ιδανικό πινιο αυτοπαγώσης \(L = 4.775 \text{ nH} \). Να βρεθεί ο συντελεστής ομιλίας ομιλίας ως φορτίο και η αντίσταση εισόδου της γραμμής.

ΖΗΤΗΜΑ 3ο
Πολυμεταδοτικό ορθογώνιο διατόμου με διαστάσεις \(a = 4 \text{ cm} \) και \(b = 2.4 \text{ cm} \), που περιέχει αέρα, η χρονικότητα και μεταβολή της έντασης του ηλεκτρικού πεδίου στο επίπεδο \(z = 0 \) δίνεται από τη σχέση:
\(E(t) = \hat{y} \sin \left(\frac{\pi x}{a} \right) \cos(2\pi f t) \left(V / m \right), \) όπου \(f = 4.5 \text{ GHz} \).

α) Να υπολογιστεί η ένταση του ηλεκτρικού και μαγνητικού πεδίου για \(t > 0 \), κατά τη χρονική στιγμή \(t \).
β) Να προσδιοριστεί το εύρος φάσματος λειτουργίας βασικού ρυθμού για τον κυματοδηγό καθότι και οι υπολογισμοί σημαντικοί εννοιο.
γ) Να προσδιοριστεί η μήκη της διάστασης \(b \) για την οποία μεγαλύτερη είναι η ακολουθία ευρώ φάσματος λειτουργίας βασικού ρυθμού. Χρωστηριστούν οι νέες υπολογισμούς σημαντικοί.

Δίνονται: \(\varepsilon = 10^{-9} \) (36π) \((\text{F/m}) \), \(\mu = (4\pi) \times 10^{-7} \) (H/m).