Θέμα 1o.(50) Κυλινδρικός πυκνώντης αποτελείται από δύο ομόκεντρους κυλινδρικούς μεταλλικούς φλοιούς, ακτίνων \(R_1 \) και \(R_2 > R_1 \), αμελητέος πάχος και πολύ μεγάλο μήκος \(l \), σε σχέση με τις ακτίνες τους. Ο εσωτερικός φλοιός είναι συνδεδεμένος σε σταθερό δυναμικό, \(V_1 = V_0 \), και ο εξωτερικός φλοιός είναι γεωμετρικά, \(V_2 = 0 \). Ο χώρος μεταξύ των φλοιών είναι πλήρης με γραμμικό διηλεκτρικό υλικό του οποίου η σχετική διηλεκτρική "σταθερά" μεταβάλλεται με κυλινδρικά συμμετρικά τρόπο, σύμφωνα με τη σχέση \(e_r = \sqrt{R_1 R_2} r / r_\perp \), όπου \(r_\perp \) η κάθετη απόσταση από τον άξονα συμμετρίας του πυκνωτή. (α) Θεωρήστε ότι ο εσωτερικός αγώνισμος φλοίου έχει επιφανειακή πυκνότητα ελεύθερων φορτίων \(\sigma_{1f} \) και υπολογίστε το διάνυσμα της ηλεκτρικής μετατόπισης \(\mathbf{D} = \mathbf{D}(r) \) μεταξύ των φλοιών του πυκνωτή, συναρτήσεις της \(\sigma_{1f} \). (β) Υπολογίστε το διάνυσμα της έντασης του ηλεκτρικού πεδίου \(\mathbf{E} = \mathbf{E}(r) \) μεταξύ των φλοιών του πυκνωτή, συναρτήσεις της \(\sigma_{1f} \). (γ) Με βάση την απάντηση του ερωτήματος (β) και τη δομή άσφαλτου δυναμικών μεταξύ των φλοιών, υπολογίστε την επιφανειακή πυκνότητα ελεύθερων φορτίων \(\sigma_{1f} \), συναρτήσεις των \((R_1, R_2, V_0) \). (δ) Αν \(Q_{1f}, Q_{2f} \) είναι το ελεύθερο φορτίο του εσωτερικού και του εξωτερικού φλοίου, αντίστοιχα, εξηγείτε γιατί \(Q_{1f} = -Q_{2f} \) και υπολογίστε τη χωρητικότητα του πυκνωτή, \(C = |Q_{1f}| / \Delta V \), συναρτήσεις των \((R_1, R_2) \). (ε) Υπολογίστε την πόλωση του διηλεκτρικού \(\mathbf{P} = \mathbf{P}(r) \) της πυκνότητας δέσμιων φορτίων, \(\sigma_{1f}, \sigma_{2f}, \rho_n \), και το συνολικό δέσμιο φορτίο. (Χρήσιμες σχέσεις: \(\mathbf{D} = e_0 \mathbf{E}, \mathbf{P} = (e_r - 1) e_0 \mathbf{E} \) και σε κυλινδρικές συντεταγμένες ισχύει: \(\nabla \cdot \mathbf{P} = \frac{1}{r} \frac{\partial}{\partial r} \left(r e_r P_r \right) + \frac{1}{r} \frac{\partial}{\partial \phi} \left(r e_r P_\phi \right) + \frac{\partial}{\partial z} P_z \)).

Θέμα 2o.(30) Ένα ηλεκτρομαγνητικό χώμα στο κενό έχει τη μορφή

\[
\mathbf{E} = (E_1(x, y), E_2(x, y), 0) e^{ikz - i\omega t}, \quad \mathbf{B} = (B_1(x, y), B_2(x, y), 0) e^{ikz - i\omega t}
\]

Χρησιμοποιώντας τις εξισώσεις του Maxwell, δείξτε ότι ισχύουν οι παρακάτω σχέσεις:

\[
\frac{\partial B_1}{\partial y} = \frac{\partial B_2}{\partial x}, \quad \frac{\partial E_1}{\partial y} = \frac{\partial E_2}{\partial x}, \quad \nabla \cdot \mathbf{E} = 0, \quad \nabla \cdot \mathbf{B} = 0
\]

και ότι επίσης \(\omega = kc \). Δείξτε τέλος ότι τα \(E \) και \(B \) είναι κάθετα.

Θέμα 3o.(30) Αγώνισμα λεπτό σύρμα σχηματίζει περιφέρεια κύκλου ακτίνας \(r \) και βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο \(\mathbf{B} \) κάθετο στο επίπεδο του κύκλου. Αν η ακτίνα της περιφέρειας σχηματίζει το σύρμα αυξάνει γραμμικά με το χρόνο, \(r(t) = at \) (Θεωρώντας ότι στο κέντρο χρονική στιγμή παραμένει κύκλος), και η διατομή του σύρματος παραμένει πάντα σταθερή, δείξτε ότι η τιμή του αναπτυσσόμενου ηλεκτρικού ρεύματος, λόγω επιχωγής, στο σύρμα είναι σταθερή. Δίνεται η ειδική αντίσταση \(\rho \) του υλικού του σύρματος και η διατομή του \(s \).

\[
\begin{align*}
(R_1, V_1 &= V_0) \\
(R_2, V_2 &= 0)
\end{align*}
\]