Θέμα I. Η δυναμική ενέργεια \(V(x) \) ενός σωματιδίου μάζας \(m \) σε μια διάσταση δίνεται από τη σχέση \(V(x) = Ax \), όπου \(A \) είναι θετική σταθερά. (α) Να εξετάσετε αν το ενεργειακό φάσμα του σωματιδίου είναι συνεχής ή διακριτό. (β) Να υπολογίσετε τη κυματοσυνάρτηση του σωματιδίου στην αναπαράσταση των ορμών. Το ενεργειακό φάσμα είναι εκφυλισμένο ή μη-εκφυλισμένο; (γ) Γράψτε τη κυματοσυνάρτηση στον χώρο των θέσεων. (δ) Εάν ισχύει για τη δυναμική ενέργεια \(V(x = 0) = \infty \), ποιο επιπλέον συνοριακή συνθήκη επιβάλλουμε; Το ενεργειακό φάσμα τώρα θα είναι συνεχής ή διακριτό; Γιατί;

Θέμα II. (α) Υπολογίστε τις ενεργειακές στάθμες ενός μονοδιάστατου αρμονικού ταλαντωτή. (β) Υπολογίστε την σχετικοτοπική διόρθωση πρώτης τάξης των ενεργειακών στάθμων ενός αρμονικού ταλαντωτή. Η διόρθωση δίνεται κλασσικά από την σχέση

\[
\Delta E = \sqrt{c^4 m^2 + c^2 p^2} - mc^2 - \frac{p^2}{2m}
\]

Θεωρώντας ότι η ομηρή είναι πολύ μικρότερη της «μάζας», σύμφωνα με τη σχέση \(p << mc \).

Σημείωση: για τον μονοδιάστατο αρμονικό ταλαντωτή δίνονται οι σχέσεις:

\[
H = \frac{p^2}{2m} + \frac{1}{2} kx^2 = \hbar \omega (a^2 + \frac{1}{2}) , \quad a = \sqrt{\frac{\hbar \omega}{2k}} x + \frac{ip}{\sqrt{2m \hbar \omega}} , \quad a^* = \sqrt{\frac{\hbar \omega}{2k}} x - \frac{ip}{\sqrt{2m \hbar \omega}}
\]

\[
\Psi_n = \sqrt{n} \Psi_{n-1} , \quad a^* \Psi_n = \sqrt{n+1} \Psi_{n+1}
\]

Θέμα III. Θεωρήστε τη Χαμιλτονιανή:

\[
H = \frac{\hbar \omega}{2} L_x^2 + \frac{\hbar}{\hbar} (L_x^2 + L_y^2)
\]

Οπού \(\hbar \) είναι θετική σταθερά και \(L_k \) η \(k \) συνιστώσα του τελεστή της στροφομής.

(α) Προσδιορίστε το ενεργειακό φάσμα της \(H \) για ένα σωματίδιο χωρίς σπιν \(I = \frac{1}{2} \).

(β) Θεωρήστε ένα σωματίδιο με κυματοσυνάρτηση \(\psi(\theta, \phi) = N(\sin \phi \cos \theta + \cos \theta) \).

Ποια είναι η μέση τιμή της ενέργειας;

Θέμα IV. Δύο σωματίδια με spin \(S_1 = 1/2, S_2 = 1/2 \) αλληλεπιδρούν τοπικά και η Χαμιλτονιανή που περιγράφει την αλληλεπίδραση είναι:

\[
H = k_1 S_1 S_2 + k_2 S_2
\]

οπό \(k_1, k_2 \) σταθερές με τις κατάλληλες μονάδες.

(α) Υπολογίστε τις δυνατές τιμές της ολικής στροφομής \(S \) των δύο σωματιδίων και τον εκφυλισμό σε κάθε περίπτωση.

(β) Υπολογίστε τις ενεργειακές ιδιωτικότητες του συστήματος και γράψτε τις αντίστοιχες κυματοσυναρτήσεις.

(γ) Εάν το σύστημα τη χρονική στιγμή \(t = 0 \) είναι στην κατάσταση \(|\chi_1^{(1)}, \chi_2^{(2)}\rangle \), ποια είναι η πιθανότητα να βρεθεί στην κατάσταση \(|\chi_1^{(1)}, \chi_2^{(2)}\rangle \) μετά από χρόνο \(t \)?
\[(1 + \varepsilon)^n = 1 + n\varepsilon + \frac{1}{2} n(n-1)\varepsilon^2 + \ldots\]

\[Y_{00} = \frac{1}{\sqrt{4\pi}}, \quad Y_{10} = \sqrt{\frac{3}{4\pi}} \cos \theta, \quad Y_{1,\pm 1} = \pm \sqrt{\frac{3}{8\pi}} e^{\pm i\theta} \sin \theta\]

\[|1, 1 \rangle = |\chi_+^{(1)}, \chi_+^{(2)} \rangle, \quad |1, 0 \rangle = \frac{1}{\sqrt{2}} (|\chi_+^{(1)}, \chi_+^{(2)} \rangle + |\chi_+^{(1)}, \chi_+^{(2)} \rangle),\]

\[|1, -1 \rangle = |\chi_+^{(1)}, \chi_-^{(2)} \rangle, \quad |0, 0 \rangle = \frac{1}{\sqrt{2}} (|\chi_+^{(1)}, \chi_-^{(2)} \rangle - |\chi_-^{(1)}, \chi_+^{(2)} \rangle)\]

"Όλα τα θέματα είναι ισοδύναμα, διάρκεια εξέτασης 2 \(\frac{1}{2}\) ώρες, χωρίς βιβλία και άλλα βοηθήματα."